

Institut für Baustoffe, Massivbau und Brandschutz

Effect of Different Shear Rates on Particle Microstructure of Cementitious Materials in a Wide Gap Vane-in-Cup Rheometer

Mahmoud Eslami Pirharati, Dr.-Ing. Hans-W. Krauss, Prof. Dr.-Ing. Dirk Lowke

Institute for Building Materials, Concrete Construction and Fire Safety (iBMB) Technical University of Braunschweig

31st International Conference "Rheological measurements on mineral building materials"

OTH Regensburg; 03.03.2022

Overview

- Concept
- Materials and sample preparation

Experimental investigations

- Focused Beam Reflectance Measurement (FBRM)-Rheometer coupled setup
- o Shear profile
- Computational Fluid Dynamics (CFD) Simulations
- Results and discussion
 - Effect of shear rates on Median Chord Length (MCL)
 - o Effect of shear rates on variation of small particles

Concept

Motivation: Modelling of rheological characteristics in case of complex processes Example: 3D Printing by concrete spraying process

[Digital Building Fabrication Laboratory, TU Braunschweig]

Materials and sample preparation

Materials

- Ordinary Portland Cement CEM I 42.5 R (OPC; HeidelbergCement)
 - $\circ~$ Mean particle size d_{50}: 14.8 μm
 - o Density: 3.12 g/cm³
- Demineralized water
- \rightarrow cement paste with a volumetric solid fraction $\Phi_{\rm v}{:}$ 0.42 (-)

Sample preparation

- 1698 g cement
- 754 g demineralized water
- mixed in a mortar mixer (according to DIN EN 196-1)

Table 1: Mixing procedure to prepare cement paste

Process	Mixing Intensity	Duration
Dry homogenization of raw material	Level 1 (140 min ⁻¹)	60 s
Addition of water during mixing	Level 1 (140 min ⁻¹)	15 s
Mixing at lower speed	Level 1 (140 min ⁻¹)	45 s
Rest, manual homogenization	_	90 s
Mixing at higher speed	Level 2 (285 min ⁻¹)	60 s
Rest, manual homogenization	_	30 s
Mixing at higher speed	Level 2 (285 min ⁻¹)	120 s

Experimental investigations

FBRM-Rheometer coupled setup

In-situ particle agglomeration monitoring during rheometer test

Focused Beam Reflectance Measurement (FBRM)

- 19 mm probe diameter
- 4.83 mm scan circle diameter

Vane-in-cup rheometer

- Anton Paar MCR 502
- Wide gap rheometer
- Searle principle
- Wall boundary conditions (vane probe, blades)

Experimental investigations

FBRM-Rheometer setup development

Integrated FBRM into vane-in-cup rheometer in 3 different radial directions

Horizontal cross section

Figure 1. Scheme of the FBRM probe integrated into the rheometer at three different radial positions (the distance of each position from the middle point until the tips of the vane probe ; (a) vertical cut, (b) top view; all dimensions in mm.

Distance of FBRM system (middle point) from tip of vane probe

- Position 1: 3.5 mm
- Position 2: 5.5 mm
- Position 3: 7.5 mm

Experimental investigations

Shear profile

The rotational speed increased from 0 rpm to 700 rpm within 15 s (ramp) The rotational speed decreased **stepwise**, each step lasting for 90 s

Figure 2. Rotational rheometer profile consisting of different steps of rotational velocity

Computational Fluid Dynamics (CFD) Simulations

Investigation the material flow behavior in a complex wide gap rheometer

Determination of the **non-linear shear rate distribution over gap** taking into account **stress peaks** in a vane-in-cup wide gap rheometer using **CFD simulations**

Results & Discussion

- The mean chord length (MCL) increases in all three positions as the average shear rate increases → increasing particle agglomeration with decreasing average shear rates
- Decreasing the number of particles < 2 µm about 31% in all radial positions with decreasing average shear rate

Averaged median chord length for different average shear rates in three different radial positions over the gap [1] Particle numbers < 2 μ m as a function of the average shear rate on the vane probe at different radial positions of the FBRM probe [1]

Results & Discussion

- <u>First source:</u> Higher local shear rate at position 1 → particle dispersion more pronounced as compared to the other two radial positions, resulting in lower MCL.
- Second source: Shear-induced particle migration

Averaged median chord length for different average shear rates in three different radial positions over the gap [1]

Different local shear rates due to various positions of the FBRM system within the gap from CFD simulations [1,2]

References

1) Eslami Pirharati, M.; Krauss, H.-W.; Schilde, C.; Lowke, D. Effect of Different Shear Rates on Particle Microstructure of Cementitious Materials in a Wide Gap Vane-in-cup Rheometer. Materials 2020, 13, 2035.

2) Eslami Pirharati, M.; Ivanov, D.; Krauss, H.-W.; Schilde, C.; Lowke, D. Numerical Simulation of the Flow Behavior of Newtonian Fluids in a Wide Gap Rheometer by CFD. In: Mechtcherine V., Khayat K., Secrieru E. (eds) Rheology and Processing of Construction Materials. RheoCon 2019, SCC 2019. RILEM Bookseries, vol 23. Springer, Cham.

Thank you for your attention

Technische
Universität
Braunschweig

