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Cazacliu & Roquet, Cement & Concrete Research (2009)
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Background

Mixing power evolution with the mixing time

gives several characteristics points:

- Dry mixing power pic (maximum dry friction into the mixture)
- Wet mixing power pic (maximum liquid bridges)

- Fluidity point (mixture becomes essentially fluid)

These points (their position) are related to the
mixture composition, batch volume, loading sequence
(and temperature!)

Common errors in analyzing power curves
We generally make use of bad correlations between:
* Power measurement Vs. Concrete consistency (Le, 2006)

excepting self compacting mixtures, after the fluidity time (chopin 2001)
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* Mixing power at a fixed mixing time (ex. 55 sec) Vs. Mixture composition

Some conclusions on how to analyze the power measurement:
- Better to analyze composition variabilities (and deduct after the consistency in the batch)
- Power curve should be interpreted at the fluidity point or (sometimes) at the wet mixing peak or dry mixing peak points

- For this points both power and time vary with the composition!
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Cazacliu & Legrand, Chemical Engineering Science (2008)



) IFSTTAR Temperature
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But nothing is simple!

Mixing power at emptying
the mixer (% of nominal pOWEf) Temperature also plays, mainly after fluidity.

90 30
- Ready mix concrete 1 Ready mix concrete 2

So, cohesion point could sometimes be
better indicator of composition

Pv (%)
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Moreno, PhD (2017)
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Sand moisture

And the aggregates initial moisture:
For sand, this could mainly be a problem of probe calibration (see PN BAP reports)

-
50 30
ap 3 BTL1 - 1/01/2015 au 10/11/2015 BTL2 - 2/12/2014 au 12/07/2015
S, 8_ 45 Volumes de 14 2m3 25 A Tous les volumes
b QV ¢
Q. TU ’ ” .
£ 8« ¢ & 7" N =3
m (] ’ “ “ A =)
= %’ &~ " .
+ 35 $ ] 15 " ,_-,7
© O L ¢ y=11393x +28576| 'jf g
- O z‘“ $$. % R-0995 S * 3 3
Vw3 10 - o ' ¢
S O ¥ . P o? y=22672x + 11259 i
8_ § i * » ¢ ; R2=0,9662
i
'E .E 20 T T T T T 0 T T T T
S E 3 45 6 1T 8 9 TR B £ 65 7
@ Sand initial moisture (%)
)

Moreno, PhD (2017)

but the high variability is demonstrated to be introduced by the coarse aggregates initial moisture (Le 2006) !
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Batch volume
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And the batch volume: We can find good correlations with the end of mixing power (but not always!!!)
The normalized standard deviation is rather constant
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) Experimental Method
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We chosen the most frequent mixtures (4)



Dry mixing power peak
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Dry mixing power peak
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) IFSTTAR Error in mixing power measurement
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The beginning of the batch power measure is biased in the control system
This is not a problem today, but a problem if we want to improve the automatic data mining and control!
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o0 ) Mixing power (kW) — independent measure
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Concrete from the previous batch is still in the new batch after emptying. Excepting the first batch of a truck !
The quantity of concrete still present in the mixer is a control system parameter (more exactly, a small mixing power is fixed)
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) IFSTTAR  Real volume Vs. Mixing power dry peak
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Dry Mixing power pic (kW) — mixture 1
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Good correlation between the dry mixing pic and the
batch volume (of coarse for the independent measure)
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It works much better when we use the real volume of the batch
(we made a mass correction in the batches)
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2 IFSTTAR Batch real mass
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It seems that the final fluidity of the concrete plays! Wlth a COI‘I‘E(.:tIOh. for the
Indeed, the mixture still in the mixer for the new batch is fluid not granular! mltla"y fluid mixture

This curve could be use to retrofit the real volume. This will correct the data obtained with the fluidity point



2 IFSTTAR with the delivery report ...
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Fluidity line
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) IFSTTAR Fluidity lines Vs. Water Reducer
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Influence of water reducer
This can be used to retrofit the composition!



) IFSTTAR Fluidity lines Vs. Water Reducer
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Influence of water reducer
This can be used to retrofit the composition!
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) IFSTTAR Fluidity line Vs. Filling ratio
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The batch volume is influent, but can be corrected



2 IFSTTAR Conclusion
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FLuiDITY CURVE separate two zones in the (Mixing Power — Mixing Time) space
- at short mixing time the mixture is not uniform
- at longer mixing time the concrete become uniform (but continue to structure under mixing!)

This is a powerful concept to determine the real W/P value into a batch mixer
However, the filling ratio change drastically the behavior: this can be corrected
The DRY MixING POWER PeAK gives accurately the filling ratio

Other mix-design parameters could be determined
by using the WET MIXING POWER CURVE



