Schleibinger Geräte Teubert u. Greim GmbH

Vikasonic -

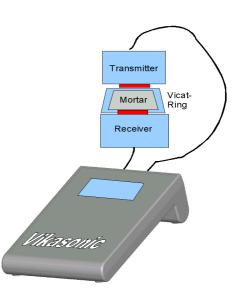
Messung der Festigkeitsentwicklung mit Ultraschall

Üblicherweise wird der Erstarrungsverlauf mit einem Penetrometer wie dem Vicat Gerät gemessen. Dieses mechanische Verfahren ist zwar einfach, hat aber einige Nachteile. In den frühen 1960er Jahren schlugen einige Forscher vor, die Ultraschalllaufzeit für die frühe Festigkeitsentwicklung von Mörtel und Beton zu verwenden. In Zusammenarbeit mit einem Deutschen Trockenmörtelhersteller hat Schleibinger ein spezielles Ultraschallmessgerät mit passender Messzelle entwickelt.

Messprinzip

Frischmörtel wird in eine Messzelle eingebracht die die Form des bekannten Vicat Ringes hat. Im Abstand von 1s oder langsamer wird ein Ultraschallpuls durch die Probe geschickt, und die Schalllaufzeit durch den Mörtel gemessen. Die Schallfrequenz beträgt 54 kHz. Die Laufzeit ändert sich mit der Festigkeitsentwicklung oder genauer gesagt mit dem dynamischen E-Modul. Mit zunehmender Festigkeit sinkt die Ultraschalllaufzeit.

Der Messaufbau


Jede Messzelle besteht aus einem Ultraschallsender und einem Ultraschallempfänger. Das Vikasonic misst kontinuierlich die Ultraschalllaufzeit, die Signalstärke und die Temperatur in der Probe. Die Daten werden kontinuierlich auf einem normalen USB Stick aufgezeichnet. Gleichzeitig wird die Schallgeschwindigkeit und das dynamische E-Modul berechnet und ebenfalls mit aufgezeichnet.

Das Schleibinger Vikasonic ist ein autonomes Messgerät. Während der Messung wird kein PC benötigt. Sie können die Daten direkt in Excel importieren. Die Software wird in unserem Hause entwickelt, und kann auf Wunsch an ihre speziellen Anforderungen angepasst werden.

Ein Anwendungsbeispiel

Dr. B. Gerstner und F. Richartz (vormals Hasit Zentrallabor www.hasit.de) haben vergleichende Untersuchungen zwischen der Vicat und der Ultraschallmethode durchgeführt.

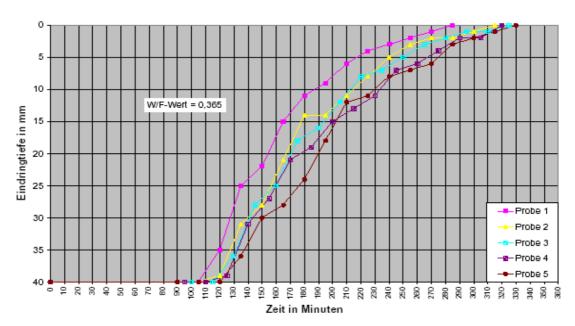


Bild 1: Reproduzierbarkeitsuntersuchungen zum Abbinden von Kalk-Gips-Putz 150 (Kissing) mit dem Abbindekonus

Tests mit der Vicat Nadel

Bei der Vicat Nadel hängt die Abweichung (in %) von der Eintauchtiefe ab. Be den gezeigten Untersuchungen lagen die Abweichungen im Bereich von 27% bis 40%.

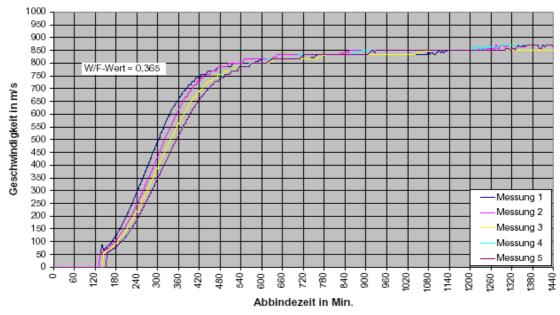


Bild 2a: Reproduzierbarkeitsuntersuchungen zum Erhärten von Kalk-Gips-Putz 150 (Kissing) mit der Ultraschall-Messzelle (Kunststoff)

Untersuchungen mit der Vikasonic Methode

Bei den Ultraschalltests lag die Abweichung bei 18%. Die Ultraschallmethode ist also genauer als die Vicat-Nadel Methode

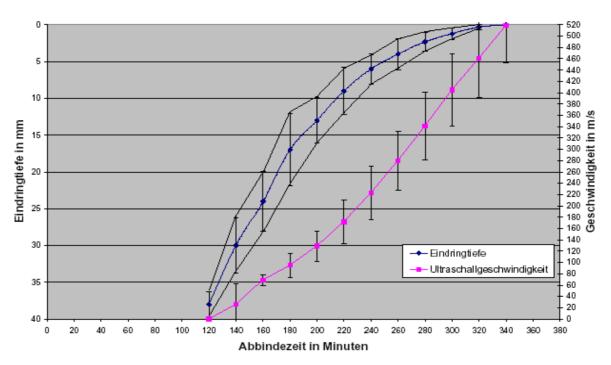


Bild 3a: Zum Zusammenhang zwischen Abbinden (Eindringtiefe) und Erhärten (Ultraschallgeschwindigkeit) am Beispiel des 150er - Kissing

Bild 5: Zusammenhang zwischen dem Abbinden (Abbindekonus) und Erhärten (Ultraschallmesszelle) nach gleichen Zeiten

Vergleich beider Methoden

Die Korrelation zwischen dem klassischen Vicat-Nadel Test und der Vikasonic Ultraschallmethode ist für verschiedene Materialien und Rezepturen unterschiedlich. Für jede Rezeptur muss eine Kalibrierung zwischen beiden Methoden durchgeführt werden. Ist eine solche Kalibrierung einmal erstellt worden, kann der Vicat-Nadel Test durch den Vikasonic Ultraschall Test ersetzt werden.

Man bekommt aber bereits Ultraschallsignale wenn die Vicat Nadel noch in das Material fällt, und man bekommt immer noch Ergebnisse wenn das Material bereits fest ist.

Die Kosten für ein automatisches Vicat Gerät sind ungefähr die selben wie für ein Vikasonic Ultraschallgerät.

Andere Anwendungen

Das Vikasonic, kann natürlich auch wie ein herkömmliches Ultraschallmessgerät verwendet werden. Zum Beispiel für den Nachweis der inneren Schädigung beim CIF Frosttestverfahren, oder für die Festigkeitsmessung an Betonbauteilen. Schleibinger liefert hierfür Messköpfe in verschiedenen Bauformen und Frequenzbereichen

Technische Daten Vikasonic*:

Laufzeitmessung (Bereich)	0.1μs bis 24000μs
Frequenz Prüfköpfe	54kHz, andere auf Anfrage
Genauigkeit	+/- 0.2µs
Eingangs Empfindlichkeit	< 250μV
Bandbreite (-3db)	10KHz 1,25 MHz
Signalspannung	200V, 500V, 1000V, 1500V
Pulsweite	<= 1μs
Puls Abstand	0.2510 s
Stromversorgung	Netz oder Batterien
Netzspannung	85V 265V 50/60Hz
Batterie	3 AA / Mignon Batterien
Display	LCD 56mm x 38mm , hintergrundbeleuchtet
USB Schnittstelle	Host interface für USB Sticks (2 Sticks im Lieferumfang, incl. PC Software)
Echtzeituhr	integriert
Temperatur Messung	Typ K Thermoelement

^{*} Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten!

Bestelldaten

Schleibinger Vikasonic mit Mörteltestzelle, Prüfköpfe und Ni/CrNi Thermoelement	U0001
Schleibinger Vikasonic mit Ni/CrNi Thermoelement, ohne Prüfköpfe	U0002
Ultraschallprüfköpfe 80 kHz, Bauform lang, Durchmesser 25 mm, besonders geeignet für die CIF Prüfung der inneren Schädigung	
Ultraschallmessbad für Betonwürfel 150 mm, US Ankopplung mit Wasser, z.B. für CIF Test	C0026

19. Nov. 2012 /home/markus/Dokumente/vikasonic/ultraschalldokument2.odt