Rheologische Messungen an Baustoffen

Federal Institute for Materials Research and Testing

Regensburg, March 11, 2009

Influence of Different Storage Conditions on the Rheological Properties of Cement Based Systems

Der Einfluss unterschiedlicher Vorlagerungsbedingungen auf die rheologischen Eigenschaften zementgebundener Systeme

Dipl.-Ing. Peter Ramge Dipl.-Ing. Wolfram Schmidt Dr.-Ing. Hans-Carsten Kühne

- 1. Introduction
- 2. Experiments
- 3. Results
- 4. Conclusions / Outlook

- 1. Introduction
- 2. Experiments
- 3. Results
- 4. Conclusions / Outlook

Introduction

Relevance

Historical excurse:

1890: 20000 t of Cement from Amöneburg used for the base of the Statue of Liberty,

delivery by ship!

today:

Industrial use: Less important but present

Scientific research: Very important! Crucial for long term

research programmes...

future:

Industrial use: Increasing relevance! global cement

import and export (e.g. China)

Introduction

BAM – VII.1 Building Materials

 Kolloquium "Rheologische Messungen an Baustoffen", Regensburg, March 11, 2009

- 1. Introduction
- 2. Experiments
- 3. Results
- 4. Conclusions / Outlook

Experiments

Overview

Four different concrete applications:

ordinary concrete (OC): standard mortar according to EN 196-1

SCC: combination type

UHPC: "moderate" mixture, w/b = $0.26 f_{c.28d} = 106 - 119 N/mm^2$

PCC: special mixture with low polymer content

Different storage conditions and storage duration of the cement:

23°C / 50% RH: 14d, 28d, 56d

23°C / 35% RH: 14d 20°C / 65% RH: 14d 8°C: 14d 40°C: 14d

"Control": specimens sealed air and vapour tight on day "zero"

Experiments

Overview

Matrix of experiments

	Blaine	Puntke	SEM pictures	strength	fresh concrete	rheology	Vicat	early shrinkage	shrinkage
cement	X	X	X						
ОС				X	X	X	X	X	
SCC				X	X	X	X	X	
UHPC				X	X	X	Х		
PCC				X	Х	X	Х		X

Experiments

Fresh concrete Rheology

Rheological investigations

manual tests and measurements with Viskomat NT

- 1. Introduction
- 2. Experiments
- 3. Results
- 4. Conclusions / Outlook

Properties of the Cement

Specific surface according to Blaine:

Values differ between 4110 and 4380 cm²/g

But no correlation between the storage conditions and the measured values

Water demand according to Puntke:

Void values differ between 43,4% and 46,3%

The observable dependency on the storage duration (in humid condition) does not correlate systematically

Resume:

Blaine and Puntke are not influenced significantly

Hardened Concrete Properties

Compressive and flexural strength:

Strength values vary in the range of a normal expected variation, no systematic correlation to the storage conditions obtainable.

Shrinkage (for PCC only):

"pre-stressed" cement seems to reduce the shrinkage value

Resume:

Hardened concrete properties are not influenced significantly

Fresh Concrete Properties

Fresh Concrete Properties

SCC

Slump flow versus time:

Humid storage conditions seem to increase the initial values

Fresh Concrete Properties

PCC

Humid storage conditions decrease the yield stress of PCC

This is often not beneficial!

Fresh Concrete Properties

Humid storage drastically increases the initial slump flow value followed by a significant loss of workability

This is not favourable!

Results SEM pictures

Humid storage conditions cause hydration products to grow on the cement grains. The longer and the more humid the exposition is, the more hydration products do form.

- 1. Introduction
- 2. Experiments
- 3. Results
- 4. Conclusions / Outlook

Outlook

Appliance in industrial use:

- If fresh concrete properties are crucial: use "fresh" material of good quality
- If fresh concrete properties are of low importance: no special action needed

Appliance in laboratory use:

"Trust in God and keep your Powder dry!"

(Oliver Cromwell, 1649)

Further research needed:

- Test series on concrete scale
- Specific investigation in hot climate with high humidity
- Research on the mineralogy of the hydration products

Rheologische Messungen an Baustoffen

Regensburg, 11th March 2009

Thanks for your Attention...

Dipl.-Ing. Peter Ramge Dipl.-Ing. Wolfram Schmidt Dr.-Ing. Hans-Carsten Kühne