

Rheologische Eigenschaften von Instandsetzungsmörteln und Steinersatzmassen – Messungen mit dem Würpelgerät

Rheological Properties of Repair Mortars – Measurements with the Wuerpel-Device

P. Ramge, H.-C. Kühne

Outline

Repair Mortars

- The Wuerpel-Device
- Exemplary Experiments
- Conclusions

Introduction

Repair Mortars:

- a) Concrete repair:
 - Sprayed application
 - Manual application
 - Demands on mechanical properties are the ruling parameters
- b) Natural stone repair in cultural heritage:
 - Manual application
 - Artistic execution
 - Demands on aesthetical and historicocultural aspects are dominant

Even though quite different in many aspects, the technology behind the scenes is basically the same

 \rightarrow for both application fields similar rheological properties are needed

Repair Mortars Introduction

Rheological Requirements

coarse particles dominant:

- to many voids, to much water needed
- no proper coherence without additional stabilizer

coarse and fine particles co dominant:

- lowest possible voids content, lowest water demand
- but very high viscosity

38

fine particles dominant:

- a bit more water needed
- low viscosity possible despite high solid content
- good coherence

Rheological Requirements

coarse particles dominant:

- to many voids, to much water needed
- no proper coherence without additional stabilizer

coarse and fine particles co dominant:

- lowest possible voids content, lowest water demand
- but very high viscosity

- a bit more water needed
- low viscosity possible despite high solid content
- good coherence

Rheological Requirements

Evaluation criterion *"***consistency":**

Rheological Requirements

Evaluation criterion "consistency":

• Named after Charles E. Wuerpel.

- Wuerpel worked with the device in the 1950s (first published 1952: C.E. Wuerpel, Masonry Cement in Proc. 3rd int. Symp. Chemistry of Cement).
- He called it "deformed cube method".
- His device was inspired by the "Plasticomèter" published by Berthier.
- Wuerpel modified the dimensions (reduced height of the mould) and the load application (load applied to one side only, the opposite edge fixed).

"Berthier-Plasticomèter" (1950)

Image source: Berthier 1950

Figure 2: Cube deformed.

Image source: C.E. Wuerpel 1952

Standardized versions

Developed in America in the 1950s:

load controlled device

Image source: Ludwig & Schwiete 1962

Modified in Germany in the 1960s: displacement controlled device

Image source: Ohnemüller 1967

Maximum displacement is measured

load-displacement-curve is recorded

Modified version at the BAM:

Updated with load cell and analog output signals for X-Y recorder in the 1980s/1990s

Recently updated for digital data logging

Functional principle

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Deformation from square shape to a rhombus shape

Functional principle

What happens to the mortar?

- It is squeezed/deformed
- due to volume change also squeezed out of the mould
- Impact is neither constant nor stationary

Functional principle

- It is squeezed/deformed
- due to volume change also squeezed out of the mould
- Impact is neither constant nor stationary

Functional principle

- It is squeezed/deformed
- due to volume change also squeezed out of the mould
- Impact is neither constant nor stationary

Functional principle

- It is squeezed/deformed
- due to volume change also squeezed out of the mould
- Impact is neither constant nor stationary

Functional principle

- It is squeezed/deformed
- due to volume change also squeezed out of the mould
- Impact is neither constant nor stationary

Functional principle

What happens to the mortar?

- It is squeezed/deformed
- due to volume change also squeezed out of the mould
- Impact is neither constant nor stationary

Functional principle

...

- Impact is neither constant nor stationary
- Velocity of transversal deformation increases with ongoing deformation
- Longitudinal force needed to maintain constant resulting transversal force increases also with ongoing deformation

Functional principle

...

- Impact is neither constant nor stationary
- Velocity of transversal deformation increases with ongoing deformation
- Longitudinal force needed to maintain constant resulting transversal force increases also with ongoing deformation

Functional principle

...

- Impact is neither constant nor stationary
- Velocity of transversal deformation increases with ongoing deformation
- Longitudinal force needed to maintain constant resulting transversal force increases also with ongoing deformation

This explains the characteristic shape of the obtained measuring curves

Functional principle

...

- Impact is neither constant nor stationary
- Velocity of transversal deformation increases with ongoing deformation
- Longitudinal force needed to maintain constant resulting transversal force increases also with ongoing deformation

This explains the characteristic shape of the obtained measuring curves

Parameter Studies on Concrete Repair Mortar

Use of different stabilizing agents

- a) Mineral stabilizer: silica fume \rightarrow Mortar A
- b) Organic stabilizer: starch ether \rightarrow Mortar B
- c) Organic stabilizer: cellulose ether \rightarrow Mortar C
- d) Control mixture without stabilizer \rightarrow Mortar 0

Parameter Studies on Concrete Repair Mortar

Use of different stabilizing agents

- a) Mineral stabilizer: silica fume \rightarrow Mortar A
- b) Organic stabilizer: starch ether \rightarrow Mortar B
- c) Organic stabilizer: cellulose ether \rightarrow Mortar C
- d) Control mixture without stabilizer \rightarrow Mortar 0

"Wuerpel results" for 12% water dosage

Parameter Studies on Concrete Repair Mortar

Use of different stabilizing agents

- a) Mineral stabilizer: silica fume \rightarrow Mortar A
- b) Organic stabilizer: starch ether \rightarrow Mortar B
- c) Organic stabilizer: cellulose ether \rightarrow Mortar C
- d) Control mixture without stabilizer \rightarrow Mortar 0

"Wuerpel results" for 14% water dosage

21th Conference "Rheology of Building Materials" 29th February - 1st March 2012 – Regensburg, Germany

40

10

0

0

10

40

40

Appropriate only for certain consistency ranges

Control mixture

20

displacement [mm]

30

10

0

0

10

Exemplary Experiments

Parameter studies on polymer dispersion powder (different dosages)

100 100 0 min 0 min 90 90 - 30 min 30 min 80 80 60 min -60 min 70 70 -90 min -90 min 60 Force [N] 60 Force [N] flow diameters: 50 flow diameters: 50 14,5 cm 15.6 cm 40 40 13,4 cm 14,9 cm 30 13,0 cm 30 14,3 cm 12,6 cm 20 1**4,**1 cm 20

Increasing polymer dosage

20

displacement [mm]

30

Parameter Studies on Repair Mortars for Natural Stone

0 min **-**30 min -60 min

20

displacement [mm]

Control mixture

100

90

80

70

60

50

40

30

20

10

0

0

Force [N]

-90 min

10

flow diameters:

14,5 cm

13,4 cm

13,0 cm

12,6 cm

Parameter studies on polymer dispersion powder (different dosages)

Appropriate only for certain consistency ranges

30

Force [N] flow diameters: 50 17.9 cm 40 17,7 cm

40

100

90

80

70

60

30

20

10

0

0

-0 min

- 30 min

-60 min

10

— 90 min

16,9 cm

16,3 cm

Increasing polymer dosage

20

displacement [mm]

30

21th Conference "Rheology of Building Materials" 29th February - 1st March 2012 – Regensburg, Germany

40

Exemplary Experiments

Parameter Studies on Repair Mortars for Natural Stone

21th Conference "Rheology of Building Materials" 29th February - 1st March 2012 – Regensburg, Germany

Exemplary Experiments

Control mixture

Parameter Studies on Repair Mortars for Natural Stone

Appropriate only for certain consistency ranges

Parameter studies on polymer dispersion powder (different dosages)

100 100 0 min -0 min 90 90 **-**30 min -30 min 80 80 -60 min 60 min 70 70 -90 min -90 min 60 60 Force [N] Force [N] flow diameters: 50 flow diameters: 50 14,5 cm 21.9 cm 40 40 13,4 cm 20.0 cm 30 13,0 cm 30 17.5 cm 12,6 cm 20 17,3 cm 20 10 10 0 Û. 10 20 30 40 0 10 20 30 0 displacement [mm] displacemant [mm]

Increasing polymer dosage

42

40

20

displacement [mm]

Appropriate only for certain consistency ranges

Parameter studies on polymer dispersion powder (different dosages)

30

0 min 0 min 90 90 - 30 min 30 min 80 80 -60 min 60 min Wuerpel 70 70 -90 min **-**90 min 60 measurements do Force [N] 60 flow diameters: flow diameters: 50 50 not make sense here 14,5 cm 28,0 cm 40 40 13,4 cm 25,9 cm anymore 30 13,0 cm 30 24,4 cm 12,6 cm 23.1 cm 20 20 10 10 0 0

40

100

0

21th Conference "Rheology of Building Materials" 29th February - 1st March 2012 – Regensburg, Germany

Control mixture

Increasing polymer dosage

20

displacement [mm]

30

40

43

10

10

100

Force [N]

0

Parameter Studies on Repair Mortars for Natural Stone

Parameter Studies on Repair Mortars for Natural Stone

Sometimes very sensitive in areas where the flow diameter does not change much

Parameter studies casein dosage in repair mortar for cultural heritage

Control mixture

Mixture containing casein

Parameter Studies on Repair Mortars for Natural Stone

Sometimes very sensitive in areas where the flow diameter does not change much

Parameter studies casein dosage in repair mortar for cultural heritage

Control mixture

Mixture containing casein

Conclusions

- The Wuerpel-Device is appropriate for mortars with high yield stress and low viscosity.
- It is inappropriate for flowable or almost flowable mortars.
- The Wuerpel-Device does not measure physical values but rather the practical performance.
- Wurpel measurements are a useful and easy to accomplish supplement to the measurement of the flow diameter.
- The measurements give valuable additional information, especially in cases where the flow diameter does not change.

Rheologische Eigenschaften von Instandsetzungsmörteln und Steinersatzmassen – Messungen mit dem Würpelgerät

Rheological Properties of Repair Mortars – Measurements with the Wuerpel-Device

Thank you for your attention!

P. Ramge, H.-C. Kühne