Adhesive mortars properties: Squeeze Flow and Contact Visualization

Alessandra L. Fujii Yamagata, F. A. Cardoso, A. Daubresse, E. Prat, M. Chaouche

Regensburg, March 13th
Outline

• Context
• Objective
• Previous Research Summary
 • MRI
 • Interfacial rheology
• Methods and Results
 • Squeeze flow
 • Microtomography
 • Optical microscopy
• Conclusion
Context

Adhesive mortars

Facades

Swimming Pools

Bathrooms
Context

Adhesive mortars

To accomplish a good performance different fresh state properties are required.
Context

System application steps:

1. Mortar application to a substrate
 - **Spreading**: Easiness to apply - good squeeze flow properties
 - **Plasticity**: Form clear ribs when troweled with a toothed comb
 - **Water retention**: Retaining water from the substrate

2. Tile Placement
 - **Easiness to squeeze the ribs**: The tiles can be easily placed
 - **Wetting**: The ability to wet the tile and form a good adhesion with tile

3. Hardening
 - **Creep**: Maintain the tiles attached during hardening
Redispersible polymer powder (RPP): Redispersible form of a polymeric colloidal suspension which improves flexibility, adhesion, tension properties.
Cellulose ether: associative polymer mainly used as a thickening agent and to improve water retention.

Cellulose Ether in the formulation → Undesired side effect (skin formation)
Context

Skin formation: it is a surface layer with different properties compared to the body underneath

- Early drying
- Carbonation
- Polymer film formation
- ...

[Zurbriggen, 2013]
How the skin rheological properties affect adhesive properties?
Objective

Characterize the rheological properties of the skin and understand its influence on adhesive properties.
Scope of the study

- Oscillatory Rheometry
- MRI
- Interfacial Rheology

Previous research on skin characterization

- Squeeze Flow
- Tomography
- Optical Microscopy

Squeeze behavior and Microstructure/Contact generation and adhesion
Formulations

Portland Cement (30%)

RPP Latex (2.5%)
VA/VeoVa

Silica Sand (67.5%)

Cellulose Ether (CE)
MHEC

- 0.1% CE
- 0.25% CE
- 0.4% CE
As CE content is increased, the initial values of G' firstly decrease due to entrained air and then increased by CE's thickening effect. Over time, the tendency is that for higher CE content, the lower the G' due to the CE's ability to delay structuring of cement particles.
MRI tests were performed in order to observe water distribution and characterize the interface.

MRI was used to obtain «mobile» water distribution.
MRI visualization over time – Different CE content

Blue = low signal = dry
Red = high signal = moisture

Signal distribution remains homogeneous over the depth, but higher signal loss

Dryer layer linearly growing, while a moisture layer underneath

Dryer layer linearly growing in a lower rate
The interfacial measurements are based on Gibbs definition of surface, the “excess property”

\[G_{\text{interface}} = \int_{-\infty}^{0} [G(z) - G_{\text{bulk}}]dz - \int_{0}^{+\infty} [G(z)]dz \]

\[G'_{\text{interface}} = \text{Average } G' \text{ including interface} - \text{Average } G' \text{ without interface} \]
Interfacial Rheology

Two measurements:
- Including the Interface
- Bulk

\[G'_{\text{interface}} = G'_{\text{(including interface)}} - G'_{\text{(bulk)}} \]

\[B_0 = \eta_s / \eta_{\text{subph}} L \]
Interfacial Rheology: Gray PC

G'(interface) results for mortar with different CE content and gray cement

Similar results to white cement are observed with an initial reduction of G'(interface) as CE content is increased, and then an inversion occurs where higher CE content result in higher G'(interface). CE increase water retention.
Interfacial Rheology: Gray PC

Interfacial rheology vs. water loss for mortar with different CE content and white cement

Similar results are observed for gray cement, reinforcing the water/solids ratio dominance, followed by a polymer properties dominance at the interface.
Interfacial rheology results in windy and non-windy conditions

The same interfacial measurements were performed in windy conditions, which show very similar behavior, but accelerated. The initial decrease of G' evolution, followed by an inversion.
Skin Properties → Adhesion and Contact Generation

- Interfacial rheology
- Bulk Properties

Squeeze

Contact
Squeeze flow procedure: samples were prepared and after the different waiting time, the squeeze flow test was performed.

Initial gap = 6 mm

$\text{t} = 0, 10, 20, 30, 40, 50, 60 \text{ min}$

Final gap = 3 mm

Typical load vs. displacement curve of a displacement-controlled squeeze flow test [Cardoso, 2009]
Squeeze flow: Impact of CE content

CE content influence on Squeeze flow

- Initial result show the increase of viscosity as CE is increased
- As the waiting times evolve, the formulation with 0.1% CE final force start to evolve, overcoming the other formulations
Squeeze flow: Impact of CE content

Final normal force of squeeze flow measurements

- Delayed structure building of CE and less evaporation of the formulations with higher CE content
Skin Properties → Adhesion and Contact Generation
Microtomography

Tomography is imaging technique based on computation reconstruction (CT) of X-ray images.
Contact of adhesive mortar and tile

Upper interface: contact generated after 5 min waiting

Bottom interface: contact generated directly of fresh material.

The tomographic 3D images were used to observe the contact at upper interface and bottom interface.
Contact of adhesive mortar and tile

(a) Upper interface

(b) Bottom interface

The images show a clear difference between the upper and bottom interface. In the upper interface, the region of the strips there are bubbles/poor contact and a better contact between the strips. In the bottom interface, the contact was perfect.
Optical Microscopy

Narrow depth of field: Narrow distance where the image is focalized
Optical Microscopy

Narrow depth-of-field microscopy: visualize the interface

Only the interface between the mortar and the tile will be focalized.

Between ribs

At the ribs

Contact

Prexiglass

mortar
Optical Microscopy

Effect of CE content – samples (equal force – 2kg/30s)

- CE 0.1%
- CE 0.25%
- CE 0.4%

Waiting time

0 min
5 min
10 min
20 min
30 min

Gain on squeeze capacity
Optical Microscopy

Waiting time = 5 min

CE 0.1%

CE 0.25%

CE 0.4%

RIBS

Between RIBS

$g_{0.1\%}\text{ CE-A}$

$g_{0.25\%}\text{ CE-A}$

Non-contact

$g_{0.4\%}\text{ CE-A}$

(a) (b) (c) (d) (e) (f)
Optical Microscopy

0.1% CE-A

<table>
<thead>
<tr>
<th>Time</th>
<th>Ribs</th>
<th>Between ribs</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Contact**
- **No Contact**

- **5 min**: No material between ribs
- **10 min**: Space between the ribs
- **20 min**: No material between ribs
- **30 min**: Glass detachment

The formulation with low CE content, rapidly loses its ability to deform, not being fully squeezed and generating space between the ribs. After 20 min, the glass detaches.
The formulation with 0.25% CE loses contact at the ribs zones over time, but the contact in the zone between the ribs was able to maintain a good contact for a longer period.
0.4% CE-A

The formulation with 0.4% CE loses contact at the ribs zones over time faster, but the contact in the zone between the ribs was able to maintain a good contact for a longer period than the other formulations.
Formulations with lower CE content do not form a skin, but have worse squeeze flow properties, resulting in lower deformation and poor contact generation.

Formulations with higher CE content, despite the skin formation, fresh material is able to flow and form good contact with the tile.
The first 5 min, the higher stress is probably related to the higher water retention due to higher CE content. For 20 and 30 min, the loss of adhesive stress is related to the squeeze flow ability.
Conclusions and Perspectives

- **Squeeze flow:** for low CE content - increase of stress forces occur over the waiting time
- **Micro-tomography:** Indication of contact generation impact was observed
- **Narrow depth-of-field for contact visualization:** despite the skin formation observed for higher CE content, the fresh material inside the skin is able to generate good contact with the tile.

Finally, further comprehension on skin formation was achieved in this study and new questions and perspective possibilities were opened.

- The presence of the skin itself does not represent an issue if it is able to break and release fresh material
- Techniques and analysis of this study could be helpful to formulation engineering
- The impact of other polymer additives and the synergical impact on adhesive properties
- Other mortar’s interfacial properties could have an influence on adhesion, such as extensional behavior of the skin
Thank you very much!