

Sicherheit in Technik und Chemie

07.03.2018

CONTRIBUTION OF THE COARSE AGGREGATE FRACTION TO RHEOLOGY – EFFECTS OF FLOW COEFFICIENT, PARTICLE SIZE DISTRIBUTION, AND VOLUME FRACTION

Wolfram Schmidt, Alejandra Ramírez Caro,

Regine Sojref, Berta Mota, Toni Fenger, Charles Osei

www.bam.de

Introduction - Rheology influences in concrete

- Ion content and strength Surface chemistry and charges Polymer sizes and structure Selective adsorption Competitive adsorption Different particle charges Hydration phases Morphology Powder properties Different particle sizes
 - Solid volume fraction
 - Interaction of particle sizes
 - PSD of finest particles
 - PSD of coarser particles

cm

mm

nm

μm

07.03.2018

Introduction – Relevance of coarse aggregates

- With increasing flowability and increasing strength, the relevance of the finer fractions increases.
- However, 96% of all ready mixed concrete types are normal strength and normal consistency. (BTB 2016)

Introduction – Relevance of coarse aggregates

- We can effectively manipulate the rheology on nm to mm scale.
- We would not try to significantly control rheology based on mm scale.
- But effects on mm and cm scale overlap with paste effects.

07.03.2018

Introduction – Challenges

Different ideas have been developed,

- Grading curves (e.g. Andreasen, Funk & Dinger)
- Modelling (e.g. De Larrard, Stroeven)

But grading curves cannot represent the complex reality,

And real aggregates seldomly behave like modellised (and mostly uni-sized, often round) particles.

07.03.2018

Introduction - Motivation

Is there a simple experimental parameter that can predict the "rheology" of aggregates?

Can the flow coefficient provide adequate information?

EN 933-6 Tests for geometrical properties of aggregates - Part 6: Assessment of surface characteristics - Flow coefficient of aggregates, Beuth Verlag GmbH, Berlin, Juli 2014

07.03.2018

Sicherheit in Technik und Chemie

EXPERIMENTAL SETUP

www.bam.de

Experimental – aggregate properties

07.03.2018

Experimental – investigated variations

07.03.2018

Experimental – investigated variations

Experimental – grading curves

Experimental – flow coefficient

- 1. Determine funnel opening
- 2. Place beaker and balance
- 3. Fill aggregates in plastic pipe
- 4. Start vibrating
- 5. Open funnel
- 6. At 1000 g, start stop watch
- 7. Take time, when balance shows $m = 1000 \cdot (1 + 7 \cdot \rho_p/2.70)$
- For standard aggregates, the flow coefficient is the time that ~7 kg or ~2.6 I take to run out.

Experimental – flow coefficient

Each sample was tested three times from the same batch.

Each batch was repeated individually for three times.

 \rightarrow 3 x 3 x 15 = 135 repetitions

The flow coefficient was determined as the arithmetic mean of 9 measurements.

Experimental – loose bulk density

EN 1097-3:199 Tests for mechanical properties of aggregates. Part 3: Determination of loose bulk density and voids

07.03.2018

No fine sand in the paste to avoid any interactions!

Fine sand (< 2mm)

07.03.2018

■ Coarse sand and aggregates (2mm - 16mm)

Influence of the admixture combination:

07.03.2018

07.03.2018

Influence of the admixture combination:

07.03.2018

Experimental – limestone filler "concrete"

07.03.2018

Experimental – rheometric investigations

Rheometer 4-SCC

Bingham evaluation of measurement data

Only qualitative results possible:

- Yield stress related value: [A]
- Plastic viscosity related value: [A·s]

Sicherheit in Technik und Chemie

RESULTS

www.bam.de

07.03.2018

07.03.2018

07.03.2018

Increasing coarse aggregate contents decrease the flow coefficient.

A minimum can be found between the two fractions.

07.03.2018

Results – loose bulk density

07.03.2018

Results – loose bulk density

No correlation!

07.03.2018

Results – yield stress

07.03.2018

Results – viscosity

Lowest viscosity always with smallest aggregate fraction.

No big effect from small to medium

Significant effect with coarsest fraction.

07.03.2018

Results – rheology

Regardless of the volume fraction, the influence of the aggregates was always particular.

This means: Already at smallest volume fractions, the aggregates affect the rheology.

And: The aggregate volume fraction is a multiplier of the particular effect.

07.03.2018

Results – yield stress vs. flow coefficient

Yield stress

Flow coefficient

07.03.2018

Results – viscosity vs. flow coefficient

Plastic viscosity

07.03.2018

Flow coefficient

Results – lowest yield stress PSD

07.03.2018

Results – highest viscosity PSD

07.03.2018

Sicherheit in Technik und Chemie

CONCLUSIONS

www.bam.de

Conclusions

Flow coefficient assessment:

- The flow coefficient does not correlate with loose bulk density.
- The flow coefficient is also not an adequate tool to predict the rheology influence of the coarse particle.

Grading:

- Best yield stress reduction with coarse fractions > 50%
- Hardly effects of sand fractions on viscosity. Strong effect of coarse fraction.

Volume fraction:

- Blends of different aggregate fractions have particular influence of rheology.
- Volume fraction does not change particular effects, only the order of magnitude.

07.03.2018

Contribution of the coarse aggregates to rheology - effects of flow coefficient, particle size distribution, and volume fraction | wolfram.schmidt@bam.de

38

Sicherheit in Technik und Chemie

THANK YOU VERY MUCH FOR YOUR KIND ATTENTION

ACKNOWLEDGEMENT:

The study was part of the M-Flow project funded by BAM

www.bam.de