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Abstract :  The lateral vibration of underwater suspended pipeline was investigated for the
case of pipeline oscillation owing to vortex shedding. Firstly we defined the tension force at
the connection legs on the  sea bottom. To define  the  dynamical  equation we used the
analogy of the Mathieu Equation. For solution we used Ince-Struut Diagram. As a numerical
example we used the pipeline behavior in a project between Turkey and North Cyprus in the
East Mediterranean Sea.  We found good agreement between our theory and experimental
data of Danish Hydraulic Institute.
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Introduction:

In this research, we defined oscillation of suspended subsea pipelines [1] by analogy
with suspended bridges and offshore tension leg  platforms [2,4,5,9].  In this  research the
mathematical application of Mathieu equation its numerical solution method are given [3].
The sub sea vibration of long cylindrical body has many solutions in the technical literature
[2,5,8].   But  the  dynamic  equations  for  these  structures  have  non-linear  characteristics.
Therefore,  to solve the  equations researchers must  apply  various  numerical methods for
investigating pipe-line stability. The main problem is to solve the stability of a system that
vibrates  during  vortex  shedding  [6,7].  The  appropriate  finite  element code  is  given  for
comparing the exactness of the obtained solution with the analytical one by different authors
[15,16,17].  As  an example we used  a  pipeline that  extends between Turkey and North
Cyprus [1](see Fig.1). 

Fig.1. Cyprus Peace water
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Statement of the Problem

 

Fig.2. The design scheme of the pipeline :
a) In longitudinal direction, b) cross-section of pipe showing the vortex shedding (where x –differential

index by displacement, V0 –mean velocity gradient from upstream to downstream direction at the
outside of the pipeline, L0 –length of the vertical connection length )

The dynamic equation of pipeline with damping is given as[2,4,7]:
0 xxtttt FuuuCMu           (1)

where:  M – mass of pipeline structure + added water mass;  F – tension force in leg;  u –
horizontal displacement; t and x – differential index by time and displacement; C –strength
constant, DCC wD5.0 ; CD – hydrodynamic strength coefficient; ρw – water density; D –
diameter of leg.

Fig 2 a, b defines the loads that affect the dynamic stability of the pipeline during
vortex shedding.

If the damping effect is neglected, we can substitute the Eq.(1)  :
0 xxtt FuMu                        (2)

and assume, that
tFFF cos10                    (3)
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Displacement of the pipeline can be written    






m

tyu sin , where  y(t) – amplitude of

harmonically displacement depends on time; m – number of modes; L – length of pipe.
Then, if we substitute   Equation (2) into the Eq.(3), we may write
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Different modes are shown in Fig.3.

                                                                                                                m=1
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                                                                                                                m=3
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                                                                                                               m=5

                                                                                                               m=6

Fig.3. Different modes of the dynamical stability of the pipe-line
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If we put in Eq.(5) instead of the θt value, we find another parameter
2

t
   giving tcos  as

2cos , where θ –frequency of the external force,
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where 
M

F0








  is circular frequency of lateral vibration of the pipeline system. 

 Equation (6) is known as the Equation of Mathieu. In canonical form we can write
this Equation, following [ 3, 6 ] as

  02cos2  yqaytt                                          (7)
where a and q are constants. From Eq.(6) we can  write [3,6] 
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If the force changes in periodicity as a harmonic law  ,0 tPPP t  where P –external
wave force; P0 –unit wave force; Pt –wave force that is independent in time; 
Φ –function of time; T –period of wave motion .    tTt   then this Equation can be
given: the Hill Equation [13,14]

   0212  ytqytt                                        (9)

The Mathieu Equation has an oscillating nature, and depends on  a  and  q constants: two
solutions have stabile and instable character (Fig.4). 

Fig.4. Two solution of Mathieu equation: a) instable; b) stable [4]

The domains of stability for the solution of the Mathieu Equation are given in the
Ince-Strutt Diagram (Fig.5). The solution of the Mathieu Equation to contact with the subsea
pipeline instability is given below in the Eqs.(21-27), which is solved by diagram (Fig.5) and
by theoretical background (see Eqs.).
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Fig.5. Ince -Strutt Diagram [6]

Every curve of the graph is given by the Mathieu Function. At first among four
instable fields we can write exact equations, if we mark them as an

r and an
l (in this r index is

right, and the l index is left hand side) as [13,14]
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 (10)

In the shaded area the stable domains are given. In the shaded areas of the Ince-Strutt
Diagram we have  parametric  vibration case for different position of the pipe-line.  From
Equation (8) we see that frequency of the system θ is bigger as if a and q are smaller. So, the
relationship of these parameters has constant values by the state of systems as kaq   may be
defined from points on the diagram as a line [see (Fig5)].

 Vortex shedding

In the starting process of separated flow around a circular cylinder a symmetric wake
domain develops, but due to instabilities, asymmetry will soon occur. The consequence is
that vortices are alternatively shed from each side of the cylinder depending on the cross-
section of the pipe-line [11]. Under shock wave forces and as a consequence  Karman vortex
shedding from the pipeline has a horizontal displacement  like the  Δx.  Then the  legs  of
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structure have tension effect on the ΔL value (Fig.2). The frequency effect of vortex shedding

is defined by the formula  
D

V
22.0  , where  V –velocity of wind wave;  D –diameter of

pipeline. The coefficient 0.22 is the Strouhal number for a circular section of the pipe-line
[4,11]. The force affecting  the Karman vortex for rigid cylinders is

tFtSvCF kkkk  sinsin
2

1
0

2
0 






            (11)

where Fk –Karman force; Ck –non-dimensional Karman coefficient (for cylinders Ck≈1) ; S –
area of the cross-section of pipe line;  ρ0 –density of water;  ωk –circular frequency of the
Karman vortex. Considering a long circular cylinder, the frequency of vortex shedding is
given by the empirical formula [11]:







 

Re

7.19
1198.0

V

d
                                      (12)

where θ is vortex shedding frequency, Re is Reynolds number, 

Vd

Re . This formula can

be written generally between the range 250<Re<2x105 which is in the transition region.
Each vortex  eddy  is  mathematically  represented  as  a  local  vortex  shedding  of  strength
magnitude (Fig. 6)

Fig.6. Example of vortex shedding around the pipe line 

Eddies in one row are either placed exactly on the opposite side from those of the
other row or they are symmetrically staggered (Fig.7). So, if the pipeline has long horizontal
dimensions,  the  vortex  shedding  are  arranged  in  zigzag  patterns.  The  mathematical
description of these lines is given in the complex form as [11, 12]. 

  H

6



 
                               l/2                             l/2                             l/2
 
                                        l

Fig.7. Arrangement of vortices in a Von Karman vortex street

A stability  investigation leads  to  the  result  that  the  first  observation is  given as
instability of the system because of the vortex shedding around the boundary layer of the
pipeline. The second observation has generally the unstable character, but becomes stable
character for a definitely ratio between the vortex street width h and distance l between two
adjacent vortices in the same row

28.02cosh
1 1  

l

h
                                          (13)

From Fig.7 we find

l
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8
                                           (14)

where Tv –vortex shedding period; Γ –vortex of strength magnitude; U∞ -incident velocity at
the upstream end of the flow field. For simplicity let us put  h≈D, where  D - the cylinder
diameter and let us approximate the vortex velocities to U∞ . Then we may to write according
to Ref.[11]

28.0

D
UTv                                                   (15)

So, if the length between vortex-shedding l is much bigger than 12R (R-radius of pipe), the
flow field  will  be  unstable.  Experimental  values  of  the  mean relative  spacing  h/l vary
between 0.19 to 0.3. 

Solution of the problem

There are many solutions to the Mathieu Equation: Whitaker, Watson (1963) → a=b,
q=-8c;  Stratton  (1942)  →a=b-c2/2,  4q=c2;  Yanke-Emde-Leush  (1964)  → a=4b,  q=8c;
National Bureau of Standard (1951) →a=b-c/2, q=c/4 [3,6,7,10,13,14].
            From Figure 2, if we have fixed support and no displacement of this point then the
system is unstable. If the foundation has small motion then this system may be stabile. If we
change the sign of the Eq.(6) then accordingly to Eq.(8) we can write:

2

2
24



ma                                              (16)

From the diagram (Fig.8) we can see that a parameter depends on vibration amplitude. Then
amplitude A has a small mass (pipeline) which will be unstable, that is  a=m2  or a=1,4,9,….

which is given as ;...
3

2
;;2 321

l

g

l

g

l

g
  for every number of modes.

The unstable field defined by m=1 has a main field and much avoidable field because
of the biggest displacement and has a practical value because the biggest oscillation mode.
For definition of instability oscillation of system can be used for analogy for of dependence
of tension leg [2,5].  
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If we analyze Eq.(1) after different transformation we can define the amplitude of oscillation
as:
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 , where T0  -period of pipe-line structure; T –period of wave

motion, relation of the maximum amplitude of displacement by lateral oscillation is

0
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                                                        (18)

Its formula enables us to define maximum amplitude of pipeline oscillation from tension
dependence during vibration –F  to initial tension force –F0 .

During  small amplitude,  when  10  q ,  the  stability  of  pipeline  may be  if  it  has  the

condition 
2

2q
a   [Eq.(8)]. 

In the non-linear systems the resonance result from the following condition


q

p
                                                               (19)

where p and q –whole prime numbers.
1) If 1 qp ,    this case is a basic case or ordinary resonance.

2) If  1q ,   p  or  
p


   - Parametric resonance. This resonance type may be

given in the linear systems with periodic coefficients, too.
3) If 1p , qv  Resonance on the overtones for external frequency. 

The Equation (7) is the basic de-multiplication resonance, where  p=1, q=2.  Then we

have 
2


  . 

In the first approximation we have



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cos                                       (20)

where b and θ is defined from Equation systems:
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If we introduce new change parameters u and v, then
cosbu  ;             sinbv                                               (22)

The differential form of  Eq.(19) we take into consideration the Eq.(20), we have
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The solution of Eq.(23) with substitution of the Eq.(19) the equation system is dependent on
the roots of the characteristic equation 
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Then the mean square of the equation gives:
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Thus, if the frequency of external force in the following interval is
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then this system may give rise to parametric resonance and the amplitude of vibration will
increase exponentially. This equality has an unstable field. Now we  define the amplitude b
and vibration rotation ψ.
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According to Eqs.(22) and (24) formulas we can see that by imaginary λ the amplitude b will
be limited by a time function. If λ, the amplitude b will to increase by an exponential law. If
in this system y=0 the state is unstable and the system can self oscillate.

Selected (used) data

As a study area of the solving the problem we used the pipeline between Turkey and
North Cyprus located at the narrowest part of the strait formed by Turkey and North Cyprus.
The pipeline will provide water at a rate of 75 million m³ per year (2.38 m³/s). The pipeline
will be a submerged floating structure and the sub sea section of the pipeline will consist of
1.6 m diameter HDPE (High Density Polyethylene) pipe approximately 78 km long. In the
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shore approach sections of the route, the pipeline will be either resting on the seabed or be
trenched and backfilled below seabed level. Between the 250 m depth contours on both the
Turkish and Cyprus sides, the pipeline will be suspended at a water depth of at least 250 m.
The  pipeline  will  be  span  from  vertical  legs  anchored  to  the  sea  bed  in  spans  of
approximately 400 – 500 meters length. 

Numerical Results

We  performed  a  numerical  simulation  using  the  following  reel  data,   from the
example project [1]. The length of pipe for one section l=500m; radius R=0.85m (D=1.7m).
The thickness of pipe δ=0.063m. The Poisson ratio is ν=0.44.  The density of HDPE material
of pipe ρ=1.4x103kg/m3. The density of sea water ρ0=1.03x103kg/m3. The elasticity modulus
of material E=120000t/m2. The stiffness of pipe EI=7500kN∙mm2. The initial tension of legs
was as F0=600; 800; 1000kN. The mass of pipe on the unit is M=600N/m. If the point (a; q)
in the shaded domain of the stability graph is found then Mathieu Equation has the following
relation (fig.5):

   xpBexpAey xixi
21

                                                               (30)

where A and B are integration constants; p1(x) and p2(x) are periodic functions with 2 period;
σ –real value of outside modes of boundary layer, which is equally half of real value of the
inside mode. 

The main results of this calculation are in Table 1. The relation between amplitude of
displacement and frequency are graphed in Fig.8 and Fig.9.

Table 1: The main results of calculation of Mathieu Equation coefficients
F0

kN

ω/θ m a q State

600 0.5 1 1 0.5 unstable
2 4 2 unstable
3 9 3 unstable

800 0.57 1 1.3 0.65 unstable
2 5.2 2.6 unstable
3 11.7 5.85 unstable

1000 0.65 1 1.7 0.85 unstable
2 6.76 3.38 unstable
3 15.2 7.6 unstable

    a*, m
  0.221
   0.2
   
   0.178

  0.0396

        0                  0.4                        0.5                   0.6                    0.7                   0.8                 
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                                                                                                                            ω/θ
Fig.8. The amplitude of parametric reaction of pipeline

Fig.9. The diagram of parametric resonance of pipeline:             calculated;           with damping 01.0



,

dark grey [19] ;           Papaidoussis&Issid, 1974 [18];                   Intec Engineering Group-Danish
Technology Institute, 2007 [1].

Discussion

In the text of mathematical formulation of instability problem at undersea it was investigated
the stability  problem of undersea pipeline  and it  is  found with the  help of the Mathieu
equation the theoretical formulation of pipe instability because of vortex shedding. To solve
the problem, first of all the vortex shedding effect on the pipe is given. By using the analogy
with suspended bridges [4,9] , TLP-type platforms [2,5] and floating offshore platforms [11]
with most used numerical methods for the solution of  Mathieu equations the problem is
solved theoretically [6,7,13,15,16,17]. The theoretical findings show us good agreements
with the practical ones. 

Conclusion
 By analogy  with  suspended bridges  it  may  be  said  that  suspended  undersea

pipelines will experience vibration with frequency equal to half of the frequency
of the wind wave load ;

 During  horizontal  vortex  shedding  the  pipeline  loses  dynamical  stability  and
shows an unstable  character.  Therefore it  is  necessary to calculate dynamical
stability for such structures;
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 This problem is  non-stationary and therefore the stability  problem may be an
example which can be analyzed by statically methods; 

 In the given Fig.3  by different modes of the dynamical stability of the pipeline
the  symmetrical  vibration  modes  are  given  m=1,  3,  5,  …,  which  shows as
parametric resonance case from Equations (16) and (17). That can be seen only by
m=1, 3, 5, ….

 The Ince-Strutt Diagram helps define coefficients a and   q without solution of the
Mathieu  Equation  and  can  be  defined  by  Mathieu  functions  with  analytical
methods;

 Numerical solutions indicate that all of cases with different forces and modes are
in an unstable state;

 In  order  to  avoid  the  unstable  cases  some  engineering  measures  must  be
considered.

Symbols

L0 –Length of leg, m;
L – Lengthening of leg, m;
ΔL – difference of lengthening, m ;
Δx – maximum horizontal displacement of pipeline, m;
F0 – unite tension force in the leg, kN;
F – Tension force in lengthening leg, kN;
φ – Angle of displacement, grad;
Ak – cross-section of leg, m2;
Fx – horizontal projection of F –tension force, kN;
P – external wave force, kN;
μ – safety coefficient;
uadm – permissible horizontal displacement;
Fadm – permissible tension force in the leg;
ω – Cyclic frequency of structure, rad/s;
 θ   - Frequency of the external force, rad/s;
T – Period of structure, s;
T0 – period of the external force, s;
g – Gravitation acceleration, m/s2;

 - Length of the pipeline section, m;
E – Modulus of elasticity, kN/mm2;
μ  - Poisson ratio;
 δ - Thickness of pipeline, m;
 R - External radius of pipeline, m;
D – External diameter, m;
 ρ - density of HDPE material, kg/m3;
 ρ0 - density of water, kg/m3;
M –mass of structure plus added water mass on the one meter, N/m;
I –moment of inertia of pipeline, m4;
EI –stiffness of pipeline structure, kN.mm2;
Fk –Karman force;
Ck –non-dimensional Karman coefficient (for cylinders Ck≈1);
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S –area of the cross-section of pipe-line;
ωk –circular frequency of Karman vortex;
Tv –vortex shedding period;
Γ –vortex of strength magnitude;
U∞ -incident velocity at the upstream end of the flow field;
A –amplitude of pipe-line displacement
Ν –kinematical viscosity;
Re –Reynolds number.
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