

02.03.2016

INFLUENCE OF EFFECTS ON NANO AND MICRO SCALE ON THE RHEOLOGICAL PERFORMANCE OF CEMENT PASTE, MORTAR AND CONCRETE

Wolfram Schmidt

BAM Bundesanstalt für Materialforschung und -prüfung

Necessity to understand rheology of concrete

Casting is by far the highest source for failure at hardened state.

Tailored and robust workability ensures durability

Rheology is key for:

- safe application
- durable performance
 - sustainability
 - innovation

Concrete in the past

- Sound functionality
- Simplicity

Concrete in the past and future options

Many people wish back the "good" (???) old times:

- Only ordinary portland cement
- w/c and cement content determine the strength and durability
- Believe in an unalterable 28-d compressive strength value

We must not forget:

- At business as usual, cement will be responsible for 1/3 of the global CO_2 emissions in 2050. (A blueprint for a climate friendly cement industry, 2008)
- We have to develop more economically and environmentally friendly technologies.
- We want to master the challenges of the future.

Concrete today

 Regarding performance specifications of concrete, there should not be any limits today.

Concrete today

- Regarding performance specifications of concrete, there should not be any limits today.
- Mix design has become more complex due to multiple parameters.

Concrete today

- Regarding performance specifications of concrete, there should not be any limits today.
- Mix design has become more complex due to multiple parameters.
- The new challenges in the "mix design" are below powder size.

Concrete today

- Regarding performance specifications of concrete, there should not be any limits today.
- Mix design has become more complex due to multiple parameters.
- The new challenges in the "mix design" are below powder size.

Influences of nano effects on the macroscopic rheology of concrete

Macroscopic effects

Superplasticizers mainly affect the yield stress.

Concrete without SP.

Identical concrete with PCE (≈ 0.7 % bwo cement, or 0.096 % bwo concrete)

Particle effects

Superplasticizers mainly affect the yield stress by adsorption which creates dispersion forces.

BAM

Early cement hydration

Upon addition of water ions are dissolved:

- Sodium
- Potassium
- Calcium
- Sulphate

BAM

Early cement hydration

First hydration phases:

- C-S-H
- Portlandite
- Ettringite

S BAM

Early cement hydration

S BAM

PCE adsorption

With PCE in the pore solution a number of effects occur in parallel:

Direct adsorption

BAM

Role of the cations

- Direct adsorption
- or via counter ions

S BAM

Role of the cations

- Direct adsorption
- or via counter ions
- Cross linking via Ca²⁺

BAM

Role of the anions

- Direct adsorption
- or via counter ions
- Cross linking via Ca²⁺
- Competitive adsorption

BAM

Time effects

- Direct adsorption
- or via counter ions
- Cross linking via Ca²⁺
- Competitive adsorption
- Not all polymers are adsorbed immediately.

BAM

Time effects

- Direct adsorption
- or via counter ions
- Cross linking via Ca²⁺
- Competitive adsorption
- Not all polymers are adsorbed immediately.
- Ongoing hydration reduces the effect of adsorbed polymers.

S BAM

Supplementary polymers

- Direct adsorption
- or via counter ions
- Cross linking via Ca²⁺
- Competitive adsorption
- Not all polymers are adsorbed immediately.
- Ongoing hydration reduces the effect of adsorbed polymers,
- Supplementary polymers can interfere.

BAM

Interactions with fillers

Limestone filler

Quartz filler

Interactions with fillers

Limestone filler

Quartz filler

Dispersion mechanism after adsorption

Electrostatic repulsion

Steric repulsion

Dispersion mechanism after adsorption

Stability starts at zeta potentials of > 30 mV or < -30 mV

Dispersion mechanism after adsorption

Assumably the steric effect is the dominating effect, regardless of the superplasticizer type.

Electrostatic repulsion

Steric repulsion

S BAM

Dimensions

Concrete without SP.

Identical concrete with PCE (≈ 0.7 % bwo cement, or 0.096 % bwo concrete)

S BAM

Dimensions

S BAM

Dimensions

PCE vs. ettringite

PCE vs. cement particle

PCE vs. aggregate

Why is it necessary to understand these effects?

High strength or 28-d strength are really not a challenge today!

Real challenges are to:

- Tailor slump life and setting
- Adjust yield stress and viscosity independently
- Make concrete more pumpable, flowable, sticky
- Modify and tailor the hydration
- Modify properties on various organic and inorganic constituents
- Cope with existing and upcoming systems including multiple component or alkaline activated binder systems

The solutions can be found on sub-micron scale!

Problems implementing more knowledge based concepts into concrete technology

Mindset of the involved parties

Concrete exhibits a Young's modulus, compressive strength and the w/c is of importance

Construction engineers

Cement producers

Construction chemistry

Who is to blame?

Construction engineers

Cement producers

Construction chemistry

Who is right?

Refusing new cement types and construction chemicals is backward. Engineers have to become more flexible and have to learn new competences.

Construction engineers

Not a single specification in cement standards provides information about interactions with superplasticizers!

Camonts fulfil th

Cement producers

Construction chemistry

Who is right?

- Cement the most important binder material can impossibly be produced in a constant quality as would desirable for superplasticizers.
- In order to use SP efficiently, influences from the entire concrete system have to be considered.
- Superplasticizer can improve a lot, but it is not a marvel that can absorb poor concrete design.

 Good concrete can only be designed based on a multidisciplinary basis.

Influencing factors

-

- Ion content and strength
- Surface chemistry and charges
- Morphology
- Hydration phases
- Polymer sizes and structure
- Selective adsorption
- Competitive adsorption
- Different particle charges
- Different particle sizes
- Solid volume fraction
- PSD of finest particles
- PSD of coarser particles
- Interaction of particle sizes

Skills required

Way forward

- For sustainable and future oriented concrete we have to change our mindset! Let us not be "chicken to change"!
- Rheology is key! Poor workability compromises long term performance and durability.
- Macroscopic flow phenomena typically have their origin on much smaller size (up to 10⁷ times smaller)
- In order to understand and successfully apply modern concrete types, new skills are required for civil engineers that include awareness physico-chemical processes.

Thank you very much for your kind attention!

For further information: Visit: <u>www.bam.de</u> [□] M-Flow Project

Announcement - KEYS

Rheology modifying admixtures

Rheology modifying admixtures are the key to better performance.

Unfortunately their mode of operation is complex!