

25th Conference on Rheology of Building Materials Regensburg, March 2016

Application of Rheology to Characterize the Stability of Mortar Compositions under Vibration

Yared A. Abebe (M.Sc.)

Prof. Dr.-Ing. Luger Lohaus

Outline

- Background Information
- Objective of Research
- Research Methodology
- Investigation Results
- Discussions
- Conclusions

Modern Engineering Structures

 Complex geometries, slender structural elements and dense reinforcements

© <u>www.slate.com</u> Bicentennial Civic Center in Córdoba, Argentina Photo by Leonardo Finotti

Normal Concrete?

© Antrag AiF: Fließfähige Betone mit erhöhter Pump- und Rüttelstabilität

- Poor workability ⇒ Problems with formwork-filling
- Poor durability due to inadequate concrete cover
- Poor bondage between reinforcements and the concrete itself

Solutions: SVB?

In principle YES, but...

© Vorlesungsfolien: Innovatives Bauen Phaeno Science Center, Wolfsburg

- Meticulous mix-design ⇒ poor robustness
- Current market share < 2,0 %</p>
- Expensive

The Perfect Solution

Flowable and robust concrete with good stability against **Flowability** external forces such as vibration and pumping **Pumpable Stability** No holistic understanding of the effects of rheology on Robustness the dynamic stability

Rheology in SCC and FVC

Self Compacting Concrete SCC

Source: Dissertation (Löwke, 2013)

- $\tau_o \ge \tau_{o,c} \Rightarrow$ No sedimentation
- τ_o < τ_{o,c} ⇒ rapid structure buildup to limit sedimentation

Flowable Vibrated Concrete **FVC**

Source: Dissertation in progress (Yared Abebe 2016)

- $\tau_{o, vib} \approx 0 \Rightarrow \tau_{o,c}$ is inadequate
- Structural breakdown and the corresponding rheological phenomena is relevant

Objective

- Introduction of a new method for the determination of the rheological parameters (yield stress, viscosity and thixotropy) during structural breakdown.
- Investigation of the effects of paste compositions on the stability of mortar under vibration
- Explaining the stability properties of mortar compositions based on the rheological characteristics of paste
- Defining stability criteria by making use of rheological parameters

Determination of Rheological Parameters

Viskomat NT

Determination of Rheological Parameters

- **Determination of**
- Yield stress (τ₀)
- Viscosity (μ)
- Thixotropy (A_{thix})

Investigation of Stability under Vibration

Vibrated mortar 30 sec.

Sieve test

Wash-out test

Penetration test

Materials and Mixtures

Paste Compositions (see Table)

Material type	Sp. gr. (kg/dm³)	$\mathbf{w/c} = 0.6$			
		$V_{\rm W}/V_{\rm F} = 0.8$	$V_{\rm W}/V_{\rm F} = 0.9$	$V_{\rm W}/V_{\rm F} = 1.0$	$V_{\rm W}/V_{\rm F}=1.2$
CEM I 42.5 N [ml]	3.13	232.2	247.5	261.2	285
Fly ash [ml]	2.31	315	270.9	231.3	162.7
Water [ml]	1.0	437.8	466.6	492.5	537.3
Air voids [ml]	_	15	15	15	15
SP [% of water]	1.05	5.41	5.41	5.41	5.41

Mortar compositions: with constant sand volume of 45.6%.

Results

Rheological Investigations on Paste

- The viscosity and the residual interparticle structure are the relevant rheological properties during a structural breakdown process.
- The yield stress has no significant role.

Results

Sieve Stability Investigations on Mortar (vibrated)

Similar Trend

Discussions

Relationship between Stability and Rheology

- The stability of mortar under vibration depends directly on the viscosity and the residual interparticle structure of the paste.
- The yield stress has no mentionable contribution to the stability.

Discussions

Stability Criteria based on Sedimentation of

Mortar (vibrated)

Green – stable zone Yellow – critical zone Red – No-go zone

Conclusions

- The new measurement method makes it possible to determine the yield stress, viscosity and the thixotropic properties of cement based mixtures.
- Rheological investigations that are based on structural breakdown are adequate to explain dynamic stability of cement based materials.
- The stability properties of mortar compositions depends on the viscosity and the residual inter particle structure of the paste. The yield stress plays a no significant role.
- There exists a critical viscosity and inter particle structure that have to be maintained, so that the sedimentation under vibration remains tolerable.

Thank you for your kind attention!