

Test Evaluations of a Fully Automatic Mortar Mixer with Torque Measurement for Determining Water Demand

Agnes Schließer Universität Stuttgart Hans-Heinrich Reuter TESTING Bluhm & Feuerherdt

Mix Design of Self Compacting Concrete

- Requirements Regarding the Mixer
- Mix Design
- Determining the Water Demand als a Function of the Superplasticizer Content
- Rheological Properties of the Mortar
- Transferability of the Mortar Mixes to Concrete
- Sedimentation Stability of the Concrete
- Summary

Requirements Regarding the Mixer

- The cement industry defined additional requirements for a automatic mortar mixer
- Calibratable ultrafine load cell
- Integrated automatic sand dosing system
- Full automatic water dosing system
- Additive dosing system for a maximum grain size of up to 4 mm

Requirements Regarding the Mixer

Requirements Regarding the Mixer

- Construction materials research required specified higher demands to the torque mixer
- Resistance can be recorded permanent during the mixing
- The control unit comprises a programmable logic controller
- Supply individual water amount at any stage

Fundamentals of Mixture Proportioning

Grading-Curve-Optimized Mix Design

Mix Design by Okamura's Method

- <u>Step 1-5:</u> Content of air, coarse aggregate, fine aggregate and cement paste
- Step 6: Water demand of the binder
- <u>Step 7:</u> Mortar tests
- Step 8: Mixing of concrete and adaption of the superplasticizer content

Mix Design Based on the Water Demands of the

Sum of the individual water demands yields the optimum water content during concrete production

- <u>Cement and additives:</u>
 Determination as a function of the power consumption
- <u>Aggregate</u>: Centrifugation + correction factor

Mix Design Using Concrete-Like Mortar (Schwartzentruber/Catherine) 8/16 2/8

Concrete:

450 kg

500 kg

Concrete-Like

Mortar: \rightarrow 21,3 kg 0/2 \rightarrow 40,37 kg 0/2 **761,67 kg**

Water demand and fluidity of concrete-like mortar and concrete are comparable

Test Evaluations

Determining the Water Demand as a Function of the Superplasticizer Content

Rheological Properties of the Mortar

Transferability of the Mortar Mixes to Concrete

			SCC flow cone	
	Water [I/1000 I]	Superplasticizer [I/1000 I]	t ₅₀₀ [s]	Slump flow [mm]
Concrete- like mortar	212	2	2	740
			4 ¹	530 ¹
	165	4	2	900
			3 ¹	900 ¹
	142	5	6	900
			16 ¹	770 ¹
Concrete	188	3	9	650
			Not pourable ¹	410 ¹
	165	4	15	730
			25 ¹	580 ¹

(¹) one hour after mixing

Sedimentation Stability of the Concrete

		Water [I/1000 I]	Superplasticizer [I/1000 I]	Discrepancy [mass %]
Concrete- like mortar	CEM III	210	2	10.1
		167	2.75	10.3
		140	3.75	10.2
	CEMI	212	2	10.4
		165	4	10.5
		142	5	7.0
Concrete	CEMI	188	3	7.6
		165	4	3.0

Summary

- The laboratory mortar mixer combines mixing and measuring
- Measuring the torque allows to determine the optimal water content during concrete production
- Water content depends on particle size distribution as well as superplasticizer content
- Transition to a different mixer or from mortar to concrete requires nonetheless certain adjustments

Agnes Schließer Universität Stuttgart agnes.schliesser@iwb.uni-stuttgart.de

Hans-Heinrich Reuter TESTING Bluhm & Feuerherdt h.reuter@testing.de, +49 176 1500 10 72

Thank You! Danke!

