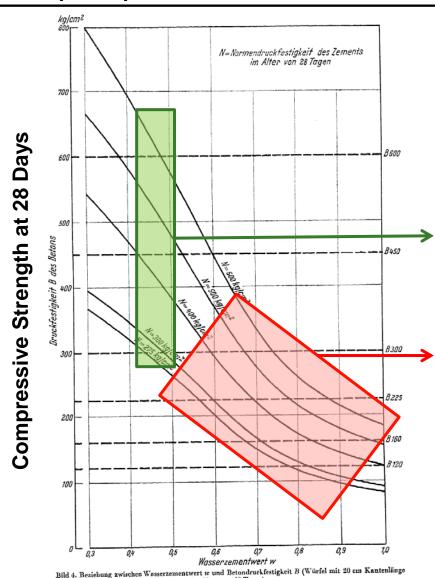

The Water Demand of Cement – Is There Any True Application-Relevant Parameter Existing?

Peter Kruspan & Julian Link

2 March 2016

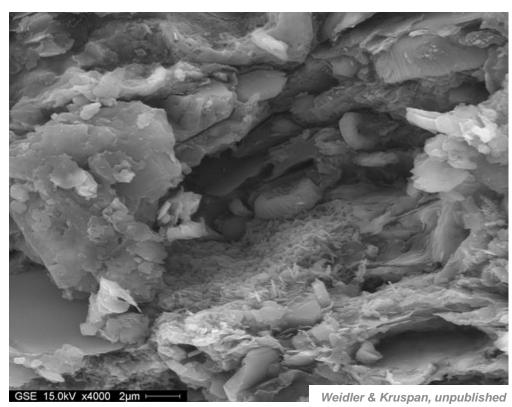


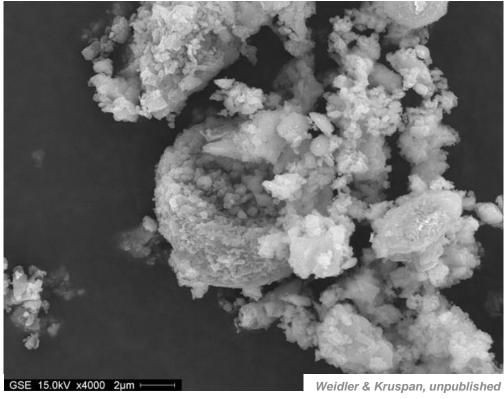
World Greenhouse Gas Emissions

Principal Relation between Water Cement Ratio and Strength Walz (1958)

The parameter 'Water Demand' is decisive when considering the substitution of clinker!

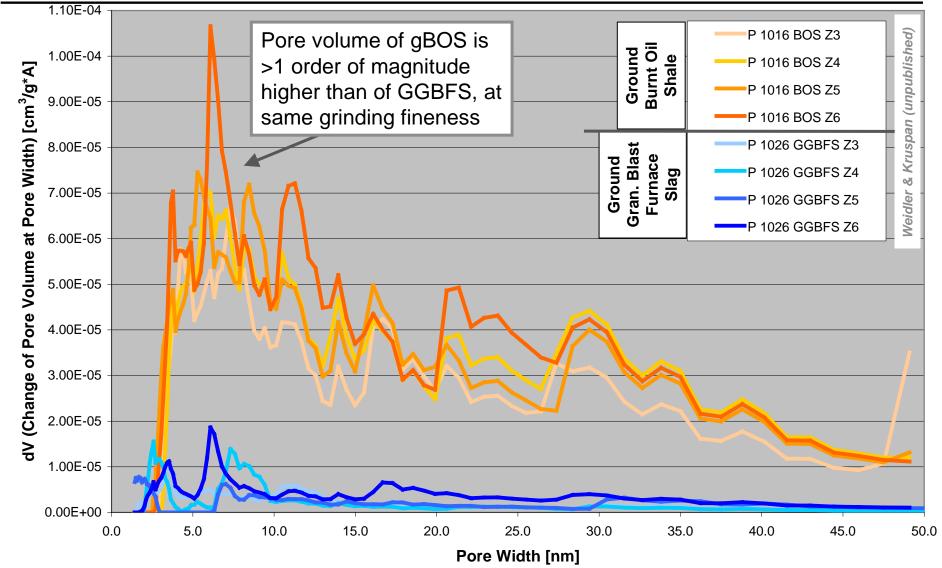
Range of Clinker ("fool-proof")


- Particles have low intrinsic porosity
- Low water cement ratio
- High compressive strength


Range of (most) Mineral Components MIC

- Particles have high intrinsic porosity
- Higher water cement ratio
- Lower compressive strength
- → (Simple) clinker substitution limited
- → Admixtures / Cement Additives required
- → Concrete technology no longer "fool-proof"

Examples of Clinker Substitution Materials (MIC) ESEM Images



High intrinsic porosity Low grinding fineness High intrinsic porosity High grinding fineness

Examples of Clinker Substitution Materials (MIC)

'Pore Volume' – BET N₂

Methods for Assessing the Water Demand

A Simplified View from the Industry

in red: standardized methods in the cement industry

Scale	Some Examples	Effort and Effect		
Cement (Powder)	 Specific Surface (Blaine EN 196-6, BET,) Granulometry / Particle Size Distribution (Laser Diffractometer) Fineness (Alpine Sieve Residue EN 196-6) Particle Packing Dry (Litre Weight Boehme) 	 Low manual effort Result generation rather fast (often) statistically robust data but limited practical relevance of interpretation 		
Paste	 Standard Consistence EN 196-3 Particle Packing Wet (Puntke) Schleibinger Viskomat NT Anton Paar / Physica Viscometer 	A 1		
Mortar	 EN 459-2 (Haegermann Shock Table) ASTM C 311 (Shock Table) Holcim Cone MBE Mortier de Béton Equivalent Lafarge Liftomat Torque Mixer Schleibinger Viskomat NT / XT 	DILEMMA		
Concrete	 Concrete Rheomat O. Wallevik ConTec BML 4 Schleibinger Viskomat XT Schleibinger eBT2 (mobile Rheometer) Concrete Workability Methods acc. EN 12350 Slump (SM) – EN 12350-2 Slump Flow (AM) – EN 12350-5 Compaction Degree Walz (VM) – EN 12350-4 	 High / huge manual effort Result generation rather slow (often) statist. fluctuating data but strong practical relevance of interpretation 		

... but There is Still Another Level of Complexity when Upscaling from Controlled Lab Environment to the 'Real (Industrial) World'...

Many constraints / high complexity

"Real World" / Final Target

Industrial Cement

Industrial Concrete

DILEMMA 2

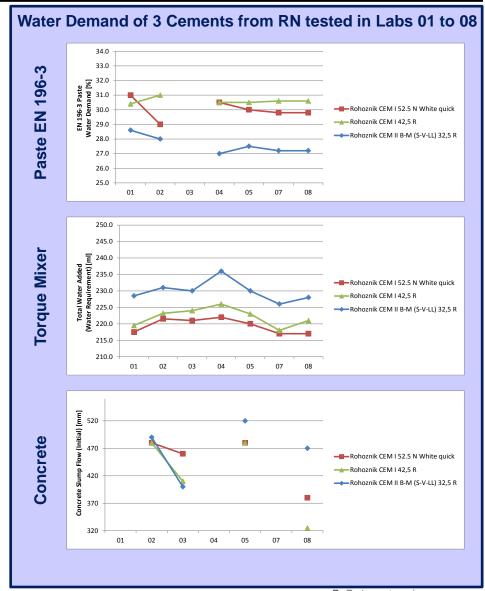
Laboratory Cement

Laboratory Concrete

Laboratory Mortar

Some constraints

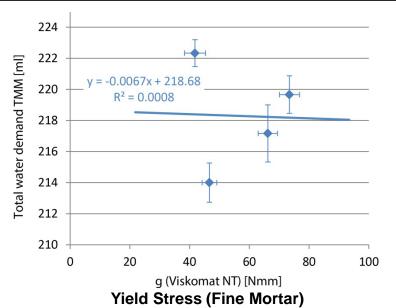
Testing / TomTomTools (2014)

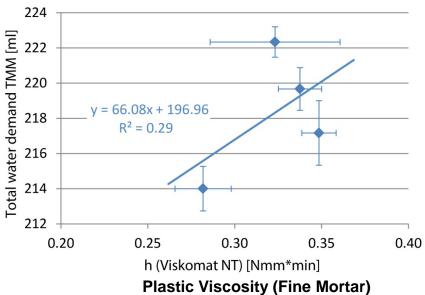


Key Result of Holcim RRT: "Torque Mixer is very precise, initial procedure however does not allow sufficient correlation to (our) concretes"

- Good repeatability / reproducibility of water demand when tested on paste (EN 196-3) and mortar (Torque Mixer).
- Water demand as tested in concrete
 does not allow for any consistent
 conclusions: the term 'standard concrete'
 does not exist! → direct comparison or
 even correlation of EN 196-3 and Torque
 Mixer to concrete slump flow is therefore
 not feasible.
- The sequence of EN 196-3 data (from lowest water demand to highest) is exactly opposite to the one of Torque Mixer!

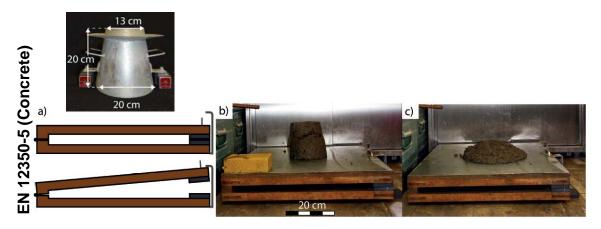
Hypothesis: **EN 196-3** responds to pure fineness / **Blaine** values (higher Blaine leading to higher EN 196-3 water demand) whereas **Torque Mixer** responds much more to the **content on (porous) Mineral Components**.





Detailed Investigation of Initial Procedure for Torque Mixer

→ No Correlation to Both Fundamental Rheological Parameters


- 4 Different Commercial (Industrial) Cements
- at least 4 Repetitions per Parameter

First Results of Modified Procedure for Torque Mixer

→ Good Correlation to (...One Particular Standard Lab...) Concrete

	Torque Mixer	Concrete Slump Flow EN 12350-5				
	Final Torque	at 5 minutes	at 15 minutes	at 30 minutes	at 45 minutes	at 60 minutes
	[Nm]	[cm]	[cm]	[cm]	[cm]	[cm]
Cement A	3.4	44	43	42	41	39
Cement A	3.5	43	42	41	40	39
Cement B	2.8	45	44	43	42	40
Cement C	2.8	46	45	44	43	42
Cement C	2.8	45	44	43	42	41
Cement D	3.0	46	45	44	42	41
Cement D	2.9	46	45	44	42	40
Cement E	3.6	44	42	40	39	38
Cement E	3.5	45	44	43	42	40
Cement F	2.8	46	45	44	43	42
Cement F	2.7	45	44	43	42	41
Cement G	3.3	44	42	40	39	38
Cement G	3.3	44	42	40	39	38
Cement H	3.4	44	43	41	40	38
Cement H	3.4	44	43	42	40	38
Cement I	4.6	42	41	40	39	38
Cement I	4.5	42	41	40	38	36
Correlation	1.00	-0.89	-0.84	-0.74	-0.79	-0.80

...but: are these concrete slump flow values really the true reference (the true / 'universal' application-relevant parameter) ...?

Conclusions

- The increasing addition of clinker replacement materials (MIC) into cement widen the gap between standard methods currently used in the cement industry ('ideal old world') and daily application-related phenomena observed in the field ('real new world').
- 2. From the many proposed 'alternative methods' (application-oriented mortar tests, more sophisticated rheological assessments etc.) none has so far reached standard character, not even for quite simple purposes
 - A 'device plus manual' alone is not sufficient, you need statistically robust procedure(s) valid for many different configurations (material-wise, regional-wise, application-wise) → 'a validated / approved standard'
 - Many stand-alone / non-harmonized solutions (or even dogmas) exist, not only among (cement) companies but also within (cement) companies. Too often labs only believe in their own concept → collaboration + compromises are required!
 - ► Chicken-egg dilemma: who is the first mover? Who invests time and resources? → Final target: acceptance of standardization bodies
 - For the time being EN 12350 testing is still our standard reference ...
- 3. One single / true / universal application-relevant parameter is still not around
 - Exchange of information between producer and customer is based on expert dialogue

RNTHAACHEN UNIVERSITY

A member of LafargeHolcim